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SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STAGE TEST

by

Williem Jackson Halll

University of North Carolina

This peper presents several sequential ana~-
logs of Stein's two-stage test procedure for
testing hypotheses about the mean of a normal
population with unknown veriance and with speci-
fied error probabilities. When sequential ex-
perimentation is feasible, they provide alter-
natives to the sequential normal test (variance
known) or the sequential t-test. If the
variance is assumed known, the procedures mey
s8till be recommended since the added cost may
be only a very few additional observations on
the average, and the performance of the tests
does not depend on the validity of any assump-
tion about the variance. Moreover, unlike the
t-test, these procedures do not require that
the alternative hypothesis be specified in
standard deviation units.

1. INTRODUCTION
When sampling from a normal population with unknown mean  and

unknown variance 02, one may wish to test the composite hypotheses

Byt W<0,0>0 ve. Hy: w24 (>0), >0

with pre-assigned strength (@, B) (bounds on the error probabilities).
It is a well-known fact that, unless at least bounds ace placed on o,
no such non-sequential test exists. A common solution is to restate

H, in (unknown) stanldard deviation units and use the t-test (non- sequen~

1
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tial or sequential), or, equivelently, allow B +to be a function of
the unktnown o¢. Neither of these reformmlotions uey be copletely
setisfectory. The only known solution to the problen as stated is
Stein's two-stage procedure (Stein, 1945, Moshuen, 1958): a pre-
lininary sample of fixed size n (> 1) is taken in order to esti-
nete 02 and a second stage sample, of size depending on this first-

stage estioate sﬁ, is then teken if necessary; since the first-stage
sauple neen and variance are statistically independent, the inforre-
tion from the first sarple about the mean p can be utiliged, to-
gether with that from the second sample, in meking the terminal de-
cision. The size of the second sample depends only on sz s 80 that

its distribution depends only on 02, and not on .
A sequentisl analog of Stein's procedure is presented here.
Agein e first stage sample is used to estirmte 0'2, but sampling is
then continued, if at all, one observation at a tine rether than in
e non-sequential fashion. It 1s otherwise anslogous to Stein's pro-
cedure, but, as one would expect, the distribution of the sarple size
2

now depends on u es well as on o .

This procedure, test T, nay be described as a sequential proba-

bility ratio test (SPRT) which is not pernitted to terminate before
2

n observations and in vwhich o

retio by the estimate sfl 3 the usual ternineation bounds A end B

is replaced in the probability

are nodified by a method due to Paulson (1961) in order to achieve
the required strength. An equivalent interpretation of the test T,
useful for studying its properties, is that it i1s a conditional
SPRT, glven 8 and o, with terminetion boundaries depending on
s, and 0. Its behavior can be studied by averaging (teking expec-

tation) with respect to 8, Thus approximations to its OC (operating
characteristic) function and ASH (avera.ge sauple nurber) function are

obtalned by averaging the corresponding approxirations of ald for the
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conditional SPRT; these approxiretions are velid if the test is not
likely to terminete with the first stage. Stein's test can also be
considered in this light. Some numerical comparisons of the power
(or 0C) and ASN functions, based on these approximations, for the
test T, for Stein's two-stage test, and for the SPRT and Fixed sample
size test (FSST) assuaing o known, are presenied. The approxine-
tion obteined for the ASN of T suggests that substantial savings,
compered with Stein's procedure, are possible,

For the case B = o, an alternative sequential test procedure T!

tie
is described, uaing/mininnm probebility ratio test (Hall, 1961) in-

stead of the SPRT. Two-sided test procedures, amalogous to T and
T', are also briefly discussed.

If an estimate of 0'2 is available fron previous experinents,
the need for the first stage is eliminated; minor nodifications of
these procedures would meke them applicable. In fact, this 1s the
context in which Peulson's method was introduced.

In none of these procedures is any of the informetion about o,
other than from the first-stage sample, utilized, so that the tests
do not depend on a sufficlent sequence of statistics. Alternative
sequential procedures, '1‘n and Tr'l’ using all evailable information
about o but without theoreticel justification, are propcsed. Some
enpirical evaluation of these procedures is planned.

Illustrative diagrams for carrying out these sequential tests are

presented.




2. THE SEQUEITIAL TEST T.

Let xl, x2, .+« be independent N(u, 02) randon veriables,
e <p<m 0o <w. Let n be a specified inteper exceeding one.
Consider a SPRT of p =0 vs. p =A (o known) besed on _J'cn, Xpe1?
}gm_e, «sey With teruination boundaries Am and ]3m and with o re-
placed by 8, vhere

':Em=z§‘=1 xi/m ’ venel

2

*n z:;l (xi - -;cn)a/ (o-1)

o, =fna =02/ 1)/2 = (-fn a) L1+ (-fn a)v + O(v2) 7

(1)

b =B = vV 1)/2 = -(<fu ) [1+ (~fn B)/v + 0(42)7,

1l

We refer to this test as test T. Note that Au >DA= l/a and Bm< B=§B,
with approxirnte equalities instead of inequalities if n is large, and
A, B ere the conservative ternination bounds of Wald (19%7, p. 42)
appropriate if o were known.

Denoting

(2) rn(sn) = A z‘;_l (xi--A/e)/sf1 (r > n),

T 41s found to be: observe (xl, cers xn) and then X ., X _.s .-
successively and, for each n > m, after observing xn,
stop saxpling and reke decision 4, (accept Ho) if rn(sm) <b;
stop sarpling and reke decision d, (accept Hl) if rn(sm) 28

continue saupling if b < rn(sn) <e, .



3. THE STRENGTH OF TEST T.

For given (sn, o), consider the conditional SPRT, T(sm, o)y
of u=0 vs. pu= A based on TS::’ X2 -oe with ternination
bounds ‘L\n and Bm vhere

- - 2,2 2,2
(3) & = {n A =8, s /05 ‘Sm = {n im =b 8 fo° .
Computing the relevant probebility ratios, noting that TSn’ Xpep? oo

are statistically independent of sm, one finds that decisions are

made according as rn(c) < b, rn(o') > &, or ‘Bn < rn(a) <& .

Using Wald's conservative bounds on the error probebilities of a
SPRT, we have

Pr {61 using 'I‘(sn,c)lsn, o, uso} Q./Zh = exp (-amsfl/ae)
(&)
Pr {do using T(sm,cr)lsu, 0y u=A }<§m = exp (bmsﬁ/ca) .

2,2
But rn(c) = rn(sn) sm/c , 80 that T(Bm’ o) is seen to have
precisely the sane decision rule at each stage as does the test T,

with 8, cauputed fron the observed values of )Ll, veey xm Thus
8 Pr {di using T(Sn,cr)lsu,c,u} - 6 Pr {di using T I Sn, T u}
= Pr 14, using T o |
4 )“J H]
and therefore, using (4) ,
2,2 -y/2
(5) ePr {d'l using 7| o, O} < gexp (-a.m Sm/tr )= (1 + 2am/v) v/

for all o since vsfl/aa = xﬁ and Eexp (t Xﬁ) = (1- at)-v/a .

Sinilarly,

(6) Pr {do using 7| o, A} < Eexp (bmsi/uz) = (1 - ebn/v)"’/ 2
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for all o. Since the conditional test 'r(sn, c)ise nomgl-nean
SPRT, its 0OC function is monotone in p (Weld, 1947), i.e.,

Pr {di using T(sm, )] sn,c,p} 18 nonotone in p for every fixed
s, end o. This, together with (5), (6) and (1), irplies

(7) Pr {dl using 7| Ho} <a, Pr {do using T|nl} < B,
and (7) states that T has strength (o, B).

Note also that since the SPRT '.l'(am,c) terninstes with certainty
for every fixed Sm’ the test T salso terninates with certainty.

L, THE OC FUNCTION OF T.
For the conditional test 'r(sm,c), Vald's approximation to the

OC <function ray be used, nanely:

(8) pr {dol sm,c,p} e G\g - 1)/('52 - 32) (2 # 0)

where h(u) = 1 - 2u/A and where the "e" implies neglect of excess
over the boundaries; this excess should be small if the test 1s likely
to have a sample number substantially larger than n. Taking expec-
tations with respect to S in (8), using (3) and dropping the sub-

scripts on a. bn and Sn, we have

(-shsa/a2
ol o} ¢ € 33 o ()

- E -{ [1-exp (-ahsa/oa)_'?z: =oex;:(--:!.'u.':-"BhSa/f-"a)}

(h > 0)
which does not depend on o. The intecrand on the RHS may be expressed
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as an alternating series with tems of decreasing macnitude so thet
successive partial suns give upper and lower bounds on it. Teking
expectations termm-by-term, the RHS thus yields successive upper and
lower bounds on the approxiuation to Pl{dol osuf » Which may be
expressed as |

1-(1+ ea.h/v)""/2 + (L+28a<b h/v)"v/f‘-‘

C ez BERMR 4 @+ bamamYRo Ll

or, using (1), as

(9) 1-(1-h+h a-a/v)-v/a + (L-2h+n a-a/v+ h B-Q/'v)-v/a

- (l - 3h + 2h a'a/v,', h B'Q/V)"V/e + (l - 4h o+ m'a/v+2m-2/V)'V/2
These are valid for h >0, i.e., for u <4/2. For p >A4/2 (h<0),

we obtain analogously

(10) Pr{do]o,u} e 1l- 6' 1- Lx_!;(-bhsa/ca)

1- exp (-b-a hs~/o°)

= (1+ 2bh/v)"’/2- (1+2%= h/v)""/2
+ (1+2 2b-a h/v)'a/v -(1+4%= h/v)'”/2
- (L+n-w 2R (o gl
b c‘-2/\')-»'/2 +(L+3n-2n 5;2/v- m-e/v)-v/e
- (14 kn- eV a2,

For B = Q, we have




8

@) el ¢ 2o (V10 s BIEEH- TR Ge)

vhere again, as in (9) and (10), the partial sums provide successive
upper and lower bounds.

At u =4/2 (h = 0), we obtain by taking limits in (8) as
h ;—> 0 and using 1'Hospital's rule:

Pr {do | 85 o, A/2} e a/(a-b)

irrespective of s, so that

(12) r {ao | o A/2} e ef(av) = (@Y. 1)/(72/% g2/, o)
which equals 1/2 if P = a.

The series (9)-(11) converpe reasonably fast except near h = 0
(u = A/2). For exauple, with ¢ =B = .05 and n = 16 and 31, we
find the following values for the successive approxirations in (11)

to the power function Pr{d._L lp}s l- Pr{d.ol p,}:

u/a h n
1/4 1/2 16 .19, .1k, .16, .15, 16, .15,
O l 16 0050, .OM}, 001‘5, .O‘ﬁ

-1/4 3/2 16 .016, .015, .015
-1/2 2 16 .0059, .0056, .005T, .0057

/4 1/2 31 21, .16, .17, .17
0 1 31 .050, ,046, .06
-1/4 3/2 31 014, .013, .013
-1/2 2 31 .00k, 0040, .004O
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The seaue speed of convergence was found for & = = .0l, Calcula-
tion beyond two significant figures is actually unwerranted since

these formulas ignore the excess.

5. THE ASN FUNCTION OF T.

For u¢ a/2 (h¥0) end for all o, we have, using {2):

(3) Exle) = & €5, (x, - /2"

= A(u-a/0) Qn/ua--?e-‘ En.

ol Pro

Also, dropping the subscript n,
(14) Exyl0) = E€[ryo)ld] = S (5, € ryl0)]808, 7

Pr {dils } ) .

llow, still dropping the n's, and ignoring excess,
Eﬁn(c)l 8, 61_7 S Emas 52/0'2 ;
Elr()s, 8,7 & F =v 6¥f®.

The excess should not be significant if I tends to be large re-
lative to n. (14) thus leads to

(15) E rylo) S E v Per {dols} +a8 Pr {dlls - 7/a®
= a - (ab) &/ pr {dols }_7/::2 :

Using (8) and proceedinc as in the previous section, we obtain for
h>0

2
Eryle) & 8- (a0) & {5} [enp(-ans®/o?)] 55, exp-1 T 2s/e%) ],
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Noting that £/ e exp(-t )ce)/vj = (1 +2t)°t -v/ 2, we £ind after
taling expectations tern-by-tern, and equsting with (13), that for
h>0

[ IV ]

(16) (A/"')2 8’ N - % - -2-(.%'.?)[(14.2&1,/1,)‘1"'/2_(14,2 =% h/v)-l-v/E
+(1+27%% h/v)'l'v/a-(1+h b h/v)-l-V/E
+ .l.._7

= %{B-Q/V_l - (0-2/v+ B-E/v - 2) [(1 -h+

n a-2/v)-l-v/2_ (1-2h+n cz'e/"-r h B-a/v)-l-v/a

+ (1 = 3h + 2h a-a/v +h B'a/V)-l-V/e
- (1-tn+ona o p-2/vy-l-v/2 | ves 7 }

For h <0, the same formula holds with h replaced by «h and with
¢ and B interchanged. For B = o,

an (e3¢ ,i‘,(a'a/" -1) 41+ 2 z:.]_('l)i [+

1 n (2. 1) 772 'V/a} (h # 0).

At pu =0 eand u =4, Vald's conservative bounds (4) on the
error probabilities of the conditional test ray be used instead of
(8); thus (15) leads to

@R E [N s 07> = b -(ard) & Pexp(-as2/62) /o2

. 1’[ﬂ--e/v_. 1- a1+ a-2/1; a2/v)-7
and sintlarly for (8/0)°C /W [usa 7 witha and B interchangea.
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IT B = ¢, these two relations reduce to

(18) (a/0)2 € [0 or a7 > v (/¥ - 1 - 20).

For h =0 (u = A/2), we have, analogous to (13)=(15),

19) & [ry@) T = @/ E[n|u=nfe]

and

(20) &c[rn(o')_]2 g aag Sh/ch - (a.2 - ba)g[sh Pr {dols /ah .
Equating (19) and (20) and using (12),

(21) (A/cr)2 Q [Hlu=0/27 S VA 8- a.(a.+b)_7g°xt/v2 = ~ab(l + %)

- {.2 (1 + %)(a‘a/". 1) (672/V - 1.

Soue successive approximations fran (17) appear below (@ = B = .05);

eveluations fron (18) and (21) also appear:

1/A h o

1/2 0 16 15.4  fron (21)

1/k 1/2 16 10.2, 1.1.2, 10.9, 11'.0, 1o‘.9, 11.0, 1.1.0
0 1 16 6.9, 6.9; lower bound frou (18) is 5.9
-1/ 3/2 16 4.8, 4.8

-1/2 2 16 3:T» 3.7

1/2 0 31 11,7 from (21)
1/4 1/2 3% 8.3, 9.4, 9.1, 9.2, 9.2
0 1 31 6.1, 6.1; lower bound frou (18) is 3.6

-1/h 3/2 31 b.7, L3
-1/2 2 31 3.3, 3.3



Convergence was slichtly faster for ¢ = f = .0l, and the lower

bound from (18) was rmch closer to the approximetion (17).

6. COMPARISON VITH THE OC AND ASN FUNCTIONS OF
STEIN'S TVWO-STAGE TEST
Let tv, « be that number which is exceeded by a t-statistic
with probability o (v degrees of freedon). The total sarple size
I 4in Stein's (one-sided) procedure with initial sample size mn = wl

end error bounds (o, B) 1s given by

N = max ([ Sﬁ (t, o tv’ﬁ)a/ A2_7 + 1, m) ,

vhere "/ /" neans "largest integer in", and

(22) (@S W & (b, + t,0)° .

the approxiretion being valid if it inmplies S N 1s scuevhat larger
then n (Stein, 1945).
The terminal decision rule for Stein's test may be written

decide dl

>
N 2 2 2
a I, . (x, - a/2)/ s (t° - t=.)/2
1=1 ™1 mo¢ WO VP decide 4

Approximating N by Sg ('t:czz + tg)/Aa, the OC function is found
to be

(23) Fr {dol “} - Fv[tv,oz N “(tv,a *t,p) m 7

where F_  1s the distribution function of a (central) t-statistic
with v degrees of freedom. The true OC function is presunadly
slipchtly steeper since the true sanmple size tends to be larger than
the approxirating value.
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Tables 1 and 2 at the end of this paper present gsome ccrpari-
sois of the approximate power and ASY functlons ol the sequential
test T and Stein's two-stage test (@ = 8 = .05 and .0l)., Also
included in the tables are the corresponding approxirote values for
the SPRT (with A = I-a/a = 1/B) and the fixed sauple size test
(FSST) if o were known (correctly). Of course, if the assunption
ebout o were lncorrect, the power functions of the SPRT and FSST
ray be drestically altered.

It 18 of interest to note that the power functions of these tests
becorie steeper as one noves fron left to right in Table 1; thus, the
test T discriminates best for internediate u-values and the FSST
discrininates best for extreme p-values.

These calculations suggest that substantial sevings nay be
possible using the sequential test T -- at lenst if one of the
hypotheses 1s correct. The couperison between T and Stein's test
is analogous to the corparison between the SPRT and the FSST of the
sane strength.

Actually, the corparison would be in closer analogy if the SPRT
with conservative boundaries (A = 1/o = 1/B) were considered, since
the test T uses conservative boundaries. If the boundaries of T
were nodiied, by increasing o and 8 in (l) s to achieve error
probabilities equal to «, the ASHN of T would be further reduced.
(Czlculations indicate that substitution of «/I-p for o and
B/I-a for B in (1) still gives conservative bounds on the error
probabilities.) The lack of knowledge ebout o costs only a very

few obsel.ations (perhops two or three) on the average, and thus the



1
test T or Stein's test may be regaumended even if o i1s thought

to be known (if e one-stape test is not essential).

T. AN AITERNATIVE SEQUENTIAL TEST T®

For the symmetric (@ = B) one-sided case, a ninirum probebility

ratio test (IPPRT), which has converging streight-line boundaries

(Hall, 1961), can be adapted in the same manner as wes the SPRT above.
The MPRT is equivalent to one of Anderson's (1960) tests. Ve thus
obtain the following test T' with decision rule:

stop sampling es soon as A]!':fl‘ﬂl(x1 - A/2)|/s§ >
2, 2
e, - nA/hsn (n >n)

and choose d, or &, according as Z(xi -4af2) 18 >or<o0

where

(24) e = v[(ea)'a/v -1 =-2fn2x/1+(-2fn2a)lv+ 0(v2)_7 .

After m observations have been taken and 8, camputed, an upper
bound on the total sample size is l+<:‘_llxs§/A2 .

o approximations to the OC or ASN functions have been ob-
tained. Presumably T' corpared with T would have a smeller ASN
in the neighborhood of u = A/2 et the cost of a sliyhtly larger
ASll at (and beyond) p = 0 and A. The couparison would be analogous
to the couperisons of the SPRT and MPRT (o known) given by Anderson
(1960).

If afp , the test can still be used with 20 in (24) re-
placed by « + B, but then one can only assert that the sum of the two
error probebilities 1s less than o + g (Hall, 1961).
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8. THE TVO-SIDED CASE

The two-sided norual test, variance known, based on the weight
function nethod (Wald, 1947) or the invariance uethod (Hall, 1959),

cannot be adapted to the case of unknown veriance as was the one-
sided test, since 0'2 does not factor out of the relevant probabili-
ty ratios. However, the Sobel-tald test procedure (Sobel and Vald,
1949), in which one in effect runs two one-sided tests sirmltaneously,
is sasily adapted. To test u = O against |u] > A, one can run

two T (or T') teets -- of p=0 ageinst p=A and p=0
against p = =A -- sirmltanecusly and continue sampling until both

tests have terminated.

9. HEURISTIC TESTS ‘I‘n and Tr'l

in discussing the sequential estiration of , (o unknown), Anscoube
(1553) noted that, if the procedure were not allowed to terminate early,
o would essentially be known. Thus, if one uses a procedure requiring
tnowledge of o but replaces it by an estirate, the properties of
the procedure should not be greatly affected. The tests T and T
are like this; in fact, the test boundaries suitable if o were known
are widened to account for the fact that o 18 estirmated on n-l de-
grees of freedon. However, o 1s not re-estinated at each successive
stage, and the choice of n seems arbitrery; in fact, if o were
much smaller than expected, a coupletely sequential procedure rmy

terminate ! “ore the first stage of T 1s coupleted.
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The following modification of T 48 proposed purely on in-

2 by sﬁ at each stage n and

tuitive prounds: re-estirate o
bese the test on rn(sn) (n > 1) with boundaries (an, b ) given
by (1) with v replaced by n-l. This test, T,» 1s like a SPRT
(0' known) with o replaced by a new estimate at each stage, and
with the boundaries widened in an attempt to account for the lack
of knowledge about o. The boundaries of Tn converce to Vald's
conservative boundaries (-fn @, fn B) which are appropriate (though

slightly conservative) if o2

is known. A diagram for carrying out
this test is illustrated in Figure 1, together with diagrams for other
sequential tests. (The SPRT iB the diagren uses Wald's approxirate
boundaries, a = fn (T -p/a) and b=fa (B/T- ) .)

The alternative test T' can be nodified analogously, obtaining
!['l'1 with the roles of c, and s replaced by s and 8, Its
boundaries depend on 5121 and thus cannot be grephed in advance (in
the diagram, the expected values of the boundaries are graphed).

Ho theoretical eveluation of these procedures has been possible.
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Figure 1. Diagrans for six sequential tests of . < 0 against

Tn H2>4 (=16, a=p = .05).
137 |
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5 “
) “
“m "*-'e-:—_—._-__.___._._._.__._._.__.._.._.
\- SreT
TTTT n
0 i & m.= 16 ';—6’
IV 1T - ::~ TR S T s s m s s oSS STIs s mts
b“'ﬂ o~ =
-5 7
| 7/
- _ . -A. 2
/ rn_LZ(xi-z)/v
-104 ! o® for SPRT & WPRT (o known)---
r
n v? ={s? for T & 1
10 o
\\ s,° for T & T ! —— —— -—
\Q
in ~
c -
0 >
i””é m; 16 7é

\
AN
=
5
\ 3
\
]
\

-C P - e

-c :, d /‘?(boundary‘ %: % ) for '
\‘-

5
AN

\—g (boundczry | % = %— ) for T

-10d



18

REFEREICES

ANDERSON, T. W. (1960). A nodification of the sequential
probebility ratio test to reduce the sample size. Ann.
Math. Stat. 31, 165-197.

ANSCOMBE, F. J. (1953). Sequential estimetion. J. Roy. Stat.
SOC. B, 15, 1‘210

HALL, W. J. (1959). The relationship between sufficiency and
invariance with applications in sequential analysis, I.
15 appear in Ann. Math. Stat. (Institute of Statistics
Mineo Series, No. 228, Chapel Hill.)

HALL, W. J. (1961). Sone sequential tests for symmetric problems.
Invited address at Eastern Reglonal Meetings of Inst. Math.
Stat., Ithace, 1. Y.

MOSHMAN, J. (1958). A nethod for selecting the size of the
initial sample in Stein's two sample procedure. Ann. lMath.
stat. 29, 1271-1275. '

PAUISON, E. (1961). A sequential procedure for comparing several
experinental categories with a control, Invited address at
Bastern Regional Meetiugs of Inst. Math. Stat., Ithaca, N. Y.

PEARSOIl, E. S. and RARTIEY, H. 0. (1954). Bionetrika Tables for
Statisticianz, 1. Cambridce University Press.

SOBEL, M. and WALD, A. (1949). A sequential decision procedure
for choosing one of three hy, .theses concerning the unknown
nean of a normal distribution. Ann. Math., Stat. 20, 502-522.

STETM, C. (1945). A two-sample test for a linear hypothesis
vhose power is independent of the variance. Ann. Math. Stat.
16, 243-258.

WALD, A. (1947). Sequential Analysis. New York: John Wiley and
Sons.




19
APPENDIX

Explanation of Tables

Teble 1: For the sequential test T, the power function
Pr {dll u} was calculated from (11) and (12). : For the SPRT, it
was calculated fron Wald's epproxiration (1 - e'ha‘)/(eha'- e’m)
vhere a = fn (I - o/a). For the other tests, it was calculated
fron (23) which reduces to Fv(-htv’ o) vhere Fv(tv, o) = 1- o for
the fixed sauple size test (PSST), v= @ , i.e., F, is the standard

normal d.f, The Pearson and Hartley (1954) tables of F, were used.

Table 2: For the test T, the ASH function wes calculated fron
(17) end (21). For the SPRT, Vald's epproximations were used, nemely
(&/o)? EHmea [1-2(a)//h 1f hjo0 and =a®4f haoO,
For the other tests, it was celculated from (22), and is the same for
all p-values.

The ‘erminal decision rule in every instance is the same, nanely
choose &, (n <0) 1f ?:N < A/2 and choose & (u >0) 1ir ?:H > a/2.

The approximations to the power function and ASN function ignore
a) excess over the boundaries in the sequential tests,
b) the restriction that N must be integrel,
c) the restriction that N > n for test T and Stein's test,
and are thus valid 1f N 4s large relative to m with hich probebility.
The author wishes to acknowledge the assistance of lr. K.
Fukushina in preparing these tables and those presented in sections
4 and 5.



TABIE 1
APPROXIMATE POWER FUNNCTIONS, Pl{dl lu}, OF PROCEDURES

FOR TESTING p < O ACAINST u >4 (@ = B)

SEQUENTTAL TESTS ONE= OR TWO-STAGE TEJTS
a |{pAl nh Test T SPRT Stein's Test PSOT
B=16 [0 =31 |(c knowm) 1wl | n=31[c known)
5 | o %.5 5 5 5 S |5
.25 1 0.5 | .154 +168 187 197 201 | .205
.1 | 0.8 |.o127 | .OTTT | .0866 0906 | .0923 | .09
.05 |0 1'.o 0450 ‘.oh63 .05 '.05 /05 .05
-.1 1‘.2 .0265 '.0278 0284 0264 | 0253 -02k2
-.25 1‘.5 ‘.011;9 '.0152 .0119 .0095 | 0081 .0068
-.5 | 2.0 | .00565 I.ooho's' .00276 .00159 | .00097 | .00050
5 0 S5 5 B 5 3 %)
25 | 0.5 || .062 075 091 .106 A1 | L122
.1 0.8 }.0192 | .0216 | .o247 0275 | .0293 | .0313
o 0 1.0 || .0095 | .0097 | .01 .01 .01 .01
-.1 | 1,2 || .00496 | .00453 | .00397 .00349 | .00307 | .00262
-.25 | 1.5 || .00206 | .00154 | .00101 .00071 | .0O0ON5 | .00019




TABLE 2
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APPROXIIATE ASN FUNCTIONS, (a/0)? £ {nlu}, OF PROCEDURES

FOR TESTING u <O AGAINST u >A (o =8)

| SEQUENTTAL TESTS ONE- OR TWO-STAGE TESTS
a l p/a | h Test T SPRT Stein's Test FSST
nw=l6 |n=31{(c knowm) ne 16 | u= 31| o known)
5 |0 15.4 1.7 8.7
| .25 | 0.5 11.0 9.2 7.4
.1 |o0.8 | 8.2 7.2 6.1
.05 1o 1.0 || 6.9 6.1 5.3 1é.3 1.5 |10.8
-1 12 59 | 53 | ke
-.25 |1.5 || L4.8 h.3 3.8
-5 2.0 || 3.7 3.3 2.9 !
’ S5 10 j‘Fus.e 31.0 |21.1
! .25 (0.5 [|23.1 18.8 |15.0
bl (0.8 [115.5 13.0 {10.9
.01 271.1 k.1 |21.6
’ 0 1.0 ||12.6 10.6 9.0
-.1 {1l..2 }|10.5 8.9 7.6
-.25 11.5 || 835 7.2 6.1




